
9/3/22, 11:26 AM Implementing Queues in PostgreSQL (Part 1: Design and Measurement) | by Christoph Bussler | Aug, 2022 | Medium

https://chbussler.medium.com/implementing-queues-in-postgresql-3f6e9ab724fa 1/8

Christoph Bussler

Aug 19 · 6 min read · Listen

Save

Implementing Queues in PostgreSQL (Part 1:
Design and Measurement)
And some initial performance measurements

Out of curiosity (ha!) I implemented a queue in PostgreSQL with readers (enqueue) and

writers (dequeue). I did some basic performance measurement on my laptop with

pgbench to get a ballpark idea of how many queue elements can be enqueued and

dequeued.

Overview: queue
A queue is a data structure that writers and readers access independently. A queue stores

many queue elements, and the term “queue” implies that there is an order to the queue

elements. A writer enqueues queue elements into the queue, while a reader dequeues

messages from the queue in the desired order. The order can be based on time, identifier

or any other property.

Note that if there is more than one client accessing the queue concurrently independent of

each other, each client retrieves queue elements independently and from its perspective

selects always the oldest queue element first (when time is used as criteria), however,

since other clients accessing it concurrently each client only observes a subset of the

queue elements.

A strict FIFO queue behavior on the reader side would require coordination. A single

reader implements a FIFO queue by default. If more than one reader accesses a queue, the

reader have to coordinate amongst themselves, or the queue coordinates reader access.

These options for coordination are not implemented in the following.1 1

Open in app

https://chbussler.medium.com/?source=post_page-----3f6e9ab724fa--------------------------------
https://chbussler.medium.com/?source=post_page-----3f6e9ab724fa--------------------------------
https://medium.com/
https://rsci.app.link/?$canonical_url=https%3A%2F%2Fmedium.com/p/3f6e9ab724fa&~feature=LiOpenInAppButton&~channel=ShowPostUnderUser&~stage=mobileNavBar
https://medium.com/
https://medium.com/search
https://medium.com/me/lists

9/3/22, 11:26 AM Implementing Queues in PostgreSQL (Part 1: Design and Measurement) | by Christoph Bussler | Aug, 2022 | Medium

https://chbussler.medium.com/implementing-queues-in-postgresql-3f6e9ab724fa 2/8

Design: table and access operations

The queue itself is implemented as a single table with three columns:

element_identifier as a UUID

time_inserted as a current database timestamp

payload as a JSON object of type JSON . JSONB was not used as the payload will not be

accessed by any operation.

The enqueue operation inserting queue elements is implemented as a SQL insert

statement. Each insert statement inserts a single queue element.

The dequeue operation is implemented as a SQL delete statement. It finds the oldest

queue element based on time_inserted , deletes it and returns its column values. This

ensures that fetched queue elements are removed from the queue. Each dequeue

operation removes a single queue element.

Implementation: table and queries
The following shows the implementation.

Table schema:

CREATE TABLE IF NOT EXISTS queue_schema.queue
(
 element_identifier UUID PRIMARY KEY,
 time_inserted TIMESTAMP,
 payload JSON
);

Index (dequeue is based on time_inserted):

CREATE INDEX time_inserted_idx
 ON queue_schema.queue (time_inserted ASC);

Open in app

https://medium.com/
https://rsci.app.link/?$canonical_url=https%3A%2F%2Fmedium.com/p/3f6e9ab724fa&~feature=LiOpenInAppButton&~channel=ShowPostUnderUser&~stage=mobileNavBar
https://medium.com/
https://medium.com/search
https://medium.com/me/lists

9/3/22, 11:26 AM Implementing Queues in PostgreSQL (Part 1: Design and Measurement) | by Christoph Bussler | Aug, 2022 | Medium

https://chbussler.medium.com/implementing-queues-in-postgresql-3f6e9ab724fa 3/8

Enqueue operation (insert):

INSERT INTO queue_schema.queue (element_identifier, time_inserted,
payload)
VALUES (gen_random_uuid(), current_timestamp, '{
 "type": "performance test",
 "topic": "fifo queue read and write, no domain logic involved"
}');

Dequeue operation (delete based on select for update skip locked):

DELETE
FROM queue_schema.queue pse
WHERE pse.element_identifier =
 (SELECT pse_inner.element_identifier
 FROM queue_schema.queue pse_inner
 ORDER BY pse_inner.time_inserted ASC
 FOR UPDATE SKIP LOCKED
 LIMIT 1)
RETURNING pse.element_identifier, pse.time_inserted, pse.payload;

The use of select for update skip locked ensures that concurrent clients can access the

table concurrently and do not block each other on existing locks.

The clause limit 1 ensures that only one queue element is dequeued at a time for each

execution.

Machine and PostgreSQL database
The following pgbench runs are executed on the following machine:

OS Name Microsoft Windows 11 Pro

Version 10.0.22000 Build 22000

Processor Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz, 1992 Mhz, 4
Core(s), 8 Logical Processor(s)

Installed Physical Memory (RAM) 32.0 GB

Open in app

https://www.postgresql.org/docs/13/pgbench.html
https://medium.com/
https://rsci.app.link/?$canonical_url=https%3A%2F%2Fmedium.com/p/3f6e9ab724fa&~feature=LiOpenInAppButton&~channel=ShowPostUnderUser&~stage=mobileNavBar
https://medium.com/
https://medium.com/search
https://medium.com/me/lists

9/3/22, 11:26 AM Implementing Queues in PostgreSQL (Part 1: Design and Measurement) | by Christoph Bussler | Aug, 2022 | Medium

https://chbussler.medium.com/implementing-queues-in-postgresql-3f6e9ab724fa 4/8

Disk Model Samsung SSD 970 EVO Plus 1TB

The database is a standard installation without configuration changes:

select version()

PostgreSQL 13.4, compiled by Visual C++ build 1914, 64-bit

Execution: pgbench — operations in isolation
In order to have a baseline, the following shows isolated executions of a single enqueue as

well as a single dequeue operation. The observations are based on a run of 60 seconds

with 15 clients.

Enqueue in isolation (no concurrent dequeue operations):

pgbench -n -c 15 -r -T 60 -h 127.0.0.1 -U queuedev -f writer.sql
queue_database
Password:
transaction type: writer.sql
scaling factor: 1
query mode: simple
number of clients: 15
number of threads: 1
duration: 60 s
number of transactions actually processed: 1144519
latency average = 0.786 ms
tps = 19074.572599 (including connections establishing)
tps = 19086.568392 (excluding connections establishing)
statement latencies in milliseconds:
 0.608 INSERT INTO queue_schema.queue (element_identifier,
time_inserted, payload)

Dequeue in isolation (no concurrent enqueue operations):

pgbench -n -c 15 -r -T 60 -h 127.0.0.1 -U queuedev -f reader.sql
queue_database
Password:
transaction type: reader.sql
scaling factor: 1

Open in app

https://medium.com/
https://rsci.app.link/?$canonical_url=https%3A%2F%2Fmedium.com/p/3f6e9ab724fa&~feature=LiOpenInAppButton&~channel=ShowPostUnderUser&~stage=mobileNavBar
https://medium.com/
https://medium.com/search
https://medium.com/me/lists

9/3/22, 11:26 AM Implementing Queues in PostgreSQL (Part 1: Design and Measurement) | by Christoph Bussler | Aug, 2022 | Medium

https://chbussler.medium.com/implementing-queues-in-postgresql-3f6e9ab724fa 5/8

query mode: simple
number of clients: 15

number of threads: 1
duration: 60 s
number of transactions actually processed: 288852
latency average = 3.117 ms
tps = 4812.968979 (including connections establishing)
tps = 4816.042062 (excluding connections establishing)
statement latencies in milliseconds:
 3.051 DELETE

The dequeue operation is slower since it has to select the oldest queue element, retrieve

and return its values, and delete the queue element. This means that several dequeue

operations will have to be run concurrently in order to maintain a steady state ideally

decreasing the number of queue elements in the queue over time so that no backlog of

queue elements builds up.

Execution: pgbench — concurrent operations

Preliminaries

When setting up concurrent operations with the above pgbench specifications it turns out

that the dequeue operations cannot keep up with the enqueue operations. In a production

system this would require additional fine tuning in order to get into a stable state where

the queue length might be oscillating, but never constantly increase over time.

If there are more enqueue than dequeue operations, one pragmatic approach could be to

throttle the enqueue and create pressure so that the queue clients writing into the queue

are slowed down. A temporary increase of queue elements is fine to observe a spike but a

continuously increasing number of queue elements would not be a good situation.

If the queue reaches an empty state, one could consider a back-off on dequeue if the

dequeue operation encounters an empty queue reducing unnecessary access. For

example, on an empty queue, wait for some amount of time before executing the next

dequeue.

A further improvement could be to implement a variable set of dequeue operations that

take the queue element arrival rate into account. When dequeue operations back-off

frequently (queue element arrival rate is decreasing), one or more dequeue operations

Open in app

https://medium.com/
https://rsci.app.link/?$canonical_url=https%3A%2F%2Fmedium.com/p/3f6e9ab724fa&~feature=LiOpenInAppButton&~channel=ShowPostUnderUser&~stage=mobileNavBar
https://medium.com/
https://medium.com/search
https://medium.com/me/lists

9/3/22, 11:26 AM Implementing Queues in PostgreSQL (Part 1: Design and Measurement) | by Christoph Bussler | Aug, 2022 | Medium

https://chbussler.medium.com/implementing-queues-in-postgresql-3f6e9ab724fa 6/8

could be paused for a longer time until the queue element arrival rate increases again.

Depending on the domain logic, batch enqueues or batch dequeues might be an option so

that the execution of one of the operations processes several queue elements in a single

transaction.

Observations

The following observations were run longer than those before. The enqueue ran for 300

seconds, and the dequeue ran for 300 seconds as well (I started the enqueue first, then

the dequeue operations). Starting tests manually is a crude approach, no question, but it

gives me a basic baseline upon which to improve on.

Enqueue operations (concurrent with dequeue operations):

pgbench -n -c 15 -r -T 300 -h 127.0.0.1 -U queuedev -f writer.sql
queue_database
Password:
transaction type: writer.sql
scaling factor: 1
query mode: simple
number of clients: 15
number of threads: 1
duration: 300 s
number of transactions actually processed: 1990767
latency average = 2.261 ms
tps = 6634.770044 (including connections establishing)
tps = 6635.616311 (excluding connections establishing)
statement latencies in milliseconds:
 2.148 INSERT INTO queue_schema.queue (element_identifier,
time_inserted, payload)

Dequeue operations (concurrent with enqueue operations):

pgbench -n -c 15 -r -T 300 -h 127.0.0.1 -U queuedev -f reader.sql
queue_database
Password:
transaction type: reader.sql
scaling factor: 1
query mode: simple
number of clients: 15
number of threads: 1

Open in app

https://medium.com/
https://rsci.app.link/?$canonical_url=https%3A%2F%2Fmedium.com/p/3f6e9ab724fa&~feature=LiOpenInAppButton&~channel=ShowPostUnderUser&~stage=mobileNavBar
https://medium.com/
https://medium.com/search
https://medium.com/me/lists

9/3/22, 11:26 AM Implementing Queues in PostgreSQL (Part 1: Design and Measurement) | by Christoph Bussler | Aug, 2022 | Medium

https://chbussler.medium.com/implementing-queues-in-postgresql-3f6e9ab724fa 7/8

duration: 300 s
number of transactions actually processed: 824711

latency average = 5.457 ms
tps = 2748.761692 (including connections establishing)
tps = 2749.536880 (excluding connections establishing)
statement latencies in milliseconds:
 5.395 DELETE

In this scenario, the queue would be ever increasing and lead to a situation where at some

point the system is running out of space. It would have to be dealt (as discussed earlier)

with so that the queue length will decrease over time.

Execution — summary
Isolated operations with 15 clients each

Enqueue: 19074 tps

Dequeue: 4812 tps

Concurrent operations with 15 clients each

Enqueue: 6634 tps

Dequeue: 2748 tps

Summary
This is a very rough ballpark evaluation on the possible throughput of a queue in

PostgreSQL based on pgbench. When implementing enqueue and dequeue in client code,

several improvements are possible that might increase the the throughput beyond what is

shown here.

Of course, the above numbers are based on my laptop and not a PostgreSQL installation

on a production server. It’d be interesting to see how different the throughput numbers

would be on a production machine.

The benefit of queues in the database are that the queue operations can be transactionally

bound to domain logic so that consistent queue processing in conjunction with domain

logic processing is possible.

Open in app

https://medium.com/
https://rsci.app.link/?$canonical_url=https%3A%2F%2Fmedium.com/p/3f6e9ab724fa&~feature=LiOpenInAppButton&~channel=ShowPostUnderUser&~stage=mobileNavBar
https://medium.com/
https://medium.com/search
https://medium.com/me/lists

9/3/22, 11:26 AM Implementing Queues in PostgreSQL (Part 1: Design and Measurement) | by Christoph Bussler | Aug, 2022 | Medium

https://chbussler.medium.com/implementing-queues-in-postgresql-3f6e9ab724fa 8/8

Furthermore, queues in the database can be consistently backed up with any domain logic

state in the same database, making recovery or failover consistent.

As always, please ping me with feedback or input.

Open in app

https://medium.com/
https://rsci.app.link/?$canonical_url=https%3A%2F%2Fmedium.com/p/3f6e9ab724fa&~feature=LiOpenInAppButton&~channel=ShowPostUnderUser&~stage=mobileNavBar
https://medium.com/
https://medium.com/search
https://medium.com/me/lists

